Confidential guide on numerology and astrology, based of GG33 Public information

MCP_SERVER
Eine einfache Implementierung des Modellkontextprotokolls
3 years
Works with Finder
1
Github Watches
0
Github Forks
5
Github Stars
MCP
A Simple implementation of a command-line tool that provides access to US weather data through a client-server architecture using the Model Context Protocol (MCP) and Google's Gemini AI. Built to practive and understand how MCP works.
Overview
This project connects a Python client application with a weather data server, allowing users to query weather information using natural language. The server communicates with the National Weather Service API to retrieve weather alerts and forecasts.
Features
- Query weather alerts for US states using state codes
- Get detailed weather forecasts for specific locations using latitude and longitude
- Natural language interface powered by Google's Gemini AI
- Client-server architecture using Model Context Protocol (MCP)
Prerequisites
- Python 3.8+
- Node.js (if running JavaScript server)
- Google Gemini API key
Installation
-
Clone the repository:
git clone https://github.com/Abhinavexists/MCP_Server.git cd weather-tool
-
Install uv if you don't have it already:
pip install uv
-
Create and activate a virtual environment:
uv venv
- On Windows:
.venv\Scripts\activate
- On macOS/Linux:
source .venv/bin/activate
- On Windows:
-
Install dependencies using uv (this project uses uv.lock and pyproject.toml):
uv pip sync
-
Create a
.env
file in the project root directory with your Gemini API key:GEMINI_API_KEY=your_gemini_api_key_here
Usage
-
Start the client and connect to the weather server:
python client.py server.py
-
Once connected, you can ask questions about weather information:
Query: What are the current weather alerts in CA? Query: What's the forecast for latitude 37.7749, longitude -122.4194?
-
Type
quit
to exit the application.
Available Tools
The server provides the following tools:
- get_alerts: Fetches weather alerts for a specified US state (using two-letter state code)
- get_forecast: Retrieves weather forecasts for a specific location (using latitude and longitude)
Project Structure
-
client.py
: MCP client that connects to the server and processes user queries using Gemini AI -
server.py
: MCP server that implements weather data tools and communicates with the National Weather Service API
Error Handling
The application includes robust error handling for:
- Invalid server script paths
- Connection issues with the NWS API
- Invalid or missing data in API responses
Future Improvements
- Add additional weather data endpoints
- Implement caching for frequently requested data
- Add support for location name lookup (instead of requiring lat/long)
- Create a web interface
License
Resources
For more information about Model Context Protocol (MCP), refer to the official Claude MCP documentation:
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease
I find academic articles and books for research and literature reviews.
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
MCP -Server für den Fetch -Webseiteninhalt mit dem Headless -Browser von Dramatikern.
Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)
Brücke zwischen Ollama und MCP -Servern und ermöglicht es lokalen LLMs, Modellkontextprotokoll -Tools zu verwenden
🔍 Ermöglichen Sie AI -Assistenten, über eine einfache MCP -Schnittstelle auf PYPI -Paketinformationen zu suchen und auf Paketinformationen zuzugreifen.
Reviews

user_A88pTLZ2
As a dedicated user of MCP_Server, I highly recommend this tool for anyone needing a reliable and efficient server solution. Created by Abhinavexists, this project is well-documented and easy to deploy. The seamless user experience and robust performance make it a standout choice. For more details, visit the GitHub page here: https://github.com/Abhinavexists/MCP_Server.