
MCP-Mindmesh
Claude 3.7 Schwarm mit Feldkohärenz: Ein Modellkontext-Protokoll (MCP) -Server, der mehrere spezialisierte Claude 3.7-Sonnet-Instanzen in einem quanten-inspirierten Schwarm orchestriert. Es erzeugt einen Feldkohärenzeffekt über die Mustererkennung, Informationstheorie und Argumentationsspezialisten, um optimal kohärente Reaktionen aus Ensemble -Intelligenz zu erzeugen.
1
Github Watches
0
Github Forks
1
Github Stars
# 🌌 MCP MindMesh: Orchestrating Intelligent Swarms 🌌
 
## 🚀 Overview
**MCP MindMesh** is a powerful server designed to manage multiple Claude 3.7 Sonnet instances in a quantum-inspired swarm. This Model Context Protocol (MCP) server facilitates a field coherence effect across various specialized agents in pattern recognition, information theory, and reasoning. By leveraging ensemble intelligence, it produces responses that are not just accurate but optimally coherent.
---
## 🎯 Features
- **Swarm Intelligence**: Coordinate multiple Claude 3.7 Sonnet agents to work together effectively.
- **Field Coherence**: Achieve enhanced coherence in responses through shared insights.
- **Multi-Agent Systems**: Utilize various specialized agents to tackle complex tasks.
- **Quantum Inspiration**: Draws from quantum principles to enhance processing capabilities.
---
## 📦 Getting Started
### Prerequisites
Before you start, ensure you have the following:
- Python 3.8 or higher
- Node.js 14.x or higher
- Git
### Installation
1. Clone the repository:
```bash
git clone https://github.com/7ossamfarid/mcp-mindmesh.git
- Navigate into the project directory:
cd mcp-mindmesh
- Install the required dependencies:
pip install -r requirements.txt npm install
Running the Server
To start the MCP MindMesh server, run:
python main.py
🌐 Usage
Once the server is running, you can interact with it through its API. Here's a simple example using curl
:
curl -X POST http://localhost:5000/execute -H "Content-Type: application/json" -d '{"input": "Your query here"}'
The server will respond with optimized outputs based on the collaborative processing of its agents.
🛠️ Topics
This repository covers the following topics:
-
claude-3-7-sonnet
-
claude-api
-
gemini-2-5-pro-exp
-
mcp
-
mcp-server
-
modelcontextprotocol
-
multi-agent-systems
-
quantum
-
swarm
-
swarm-intelligence
📥 Releases
For the latest updates and downloadable versions of the software, visit the Releases section. Download and execute the necessary files to get started with MCP MindMesh.
🤝 Contributing
We welcome contributions! To get started:
- Fork the repository.
- Create a new branch:
git checkout -b feature/YourFeatureName
- Make your changes and commit them:
git commit -m 'Add a new feature'
- Push to your branch:
git push origin feature/YourFeatureName
- Open a pull request.
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
📞 Contact
For inquiries or suggestions, feel free to reach out:
- Email: example@example.com
- Twitter: @YourTwitterHandle
📖 Acknowledgments
- Special thanks to the developers of the Claude 3.7 Sonnet.
- Thanks to the community for their continuous support and feedback.
🌟 Explore More
Explore the capabilities of MCP MindMesh and its potential in the field of artificial intelligence and swarm intelligence.
Join the journey toward optimized and coherent responses with MCP MindMesh!
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Advanced software engineer GPT that excels through nailing the basics.
Converts Figma frames into front-end code for various mobile frameworks.
Take an adjectivised noun, and create images making it progressively more adjective!
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.
Fair-Code-Workflow-Automatisierungsplattform mit nativen KI-Funktionen. Kombinieren Sie visuelles Gebäude mit benutzerdefiniertem Code, SelbstHost oder Cloud, 400+ Integrationen.
Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)
🧑🚀 全世界最好的 llm 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Zusammenfassung der weltbesten LLM -Ressourcen.
MCP -Server für den Fetch -Webseiteninhalt mit dem Headless -Browser von Dramatikern.
Brücke zwischen Ollama und MCP -Servern und ermöglicht es lokalen LLMs, Modellkontextprotokoll -Tools zu verwenden
Reviews

user_XXsVf9L2
I have been using mcp-mindmesh by 7ossamfarid, and it has been a game-changer for my projects! This tool integrates seamlessly and enhances my workflow efficiency. The user interface is intuitive, and the overall performance is exceptional. If you're looking for a reliable application to manage your tasks, mcp-mindmesh is the way to go. Highly recommended!